The calculation of surface area and volume of k-balls inscribed in a regular prism and pyramid.

Lowprukmanee, Chetnarong

Naruemon, Thanwarat
Thongsujaritkul, Thananan

The purpose of this project was to find relation between the volume of a prism and a truncated pyramid with regular n-sided polygon base and to show that the surface area and volume of the k-balls inscribed can be calculated if the perimeter is known. We found that the volume of the truncated pyramid is $1 / 3\left[\left(P^{\prime} / P\right)^{\wedge} 2+\left(P^{\prime} P\right)+1\right]$ times the volume of the prism when the perimeter of the prism base is P and P^{\prime} is the perimeter of the truncated pyramid. The surface area or volume formula of the k-balls inscribed in the shape of a prism with regular n-sides polygon base is $C k[p i()](P / n \cot A)^{\wedge} d$ Where $A=p i() / n, C$ is a constant for calculating surface area or volume of the k-balls inscribed in the shape of the prism, namely, we denoted $C=1$ and $C=16$ for calculating surface area and volume respectively. The exponent d is a constant, $d=2$ was denoted for calculating surface area and $d=3$ for volume of the k-balls inscribed in the prism. The formula for surface area or volume of the k-ball inscribed in the shape of a pyramid with a regular n-sided polygon base is $E[p i()]\left[(k P / n \cot A)^{\wedge} f\left(1-B^{\wedge} k f\right)\right.$ When $\left.B=\left[\left(4 k^{\wedge} 2+1\right)^{\wedge} 1 / 2-1\right)\left(\left(4 k^{\wedge} 2+1\right)^{\wedge} 1 / 2+1\right)\right]$ and E is a constant denoted for finding surface area or volume of the k-balls inscribed in the shape of the pyramid, $E=1\left(4 k^{\wedge} 2+1\right)^{\wedge} 1 / 2$ for calculation of surface area and $E=1\left[6\left(3 k^{\wedge} 2+1\right)\right]$ for calculation of volume. The exponent f is a constant for calculating surface area or volume of the k-balls inscribed in the shape of the pyramid. We denoted $f=2$ and $f=3$ for calculating surface area and volume of the k-balls inscribed in the pyramid respectively.

