The Investigation of an Impartial Normal Play Game

Geisler, Emil

This project investigated the winning values of the following Nim variant: There exists set A and set B, with some number of elements in each. On a player's turn, the player may reduce set A by x, set B by y, or both sets by z, where x, y, and z are positive integers. The player who takes the last turn, or reduces A and B to zero, wins. "Safe spots" are winning values of sets A and B, such that the player who reduces the sets to the safe spot values will win. By analyzing the relationships between safe spots, a sequence was derived to represent the difference between adjacent safe spots. Subsequently, a recursive equation was developed to represent the sequence. The average distance between safe spots was calculated and found to be equal to phi, where phi is equal to $f _n / f _(n-1)$ as n goes to infinity, where $f _n$ is the $n t h$ Fibonacci number. Because of the correlation to the Fibonacci series, the project results may have applications in biology, number theory, geometry, and other fields of math and science.

