A Method to Calculate Exact Values of \mathbf{n} th Power of the Irrational Number Phi

Ramirez-Vargas, Josue

This project created an effective mathematical method that simplifies the power elevating process for the golden ratio, (Phi). When using irrational numbers, approximations are used in utilizing a finite quantity of these digits. High exponentiation make results less exact, adding a long and tedious process. Assuming (phi) is a solution to [$\mathrm{x}^{\wedge} 2-\mathrm{x}-1=0$], then, in combination with the replacement property and multiplicative equality, you will find a relationship to the values of the powers of the number (Phi). It started with the equation $\left.\left[(\mathrm{Phi})^{\wedge} 2-(\mathrm{Phi})-1=0\right)\right]$, cleared $\left.\left[(\mathrm{Phi})^{\wedge} 2\right)\right]$ and the result was, $\left[(\mathrm{Phi})^{\wedge} 2=(\mathrm{Phi})+1\right]$, then (Phi) is multiplied by the complete equation $\left[(\mathrm{Phi})^{*}\left((\mathrm{Phi})^{\wedge} 2=(\mathrm{Phi})+1\right)\right]$, resulting in, $\left.\left[(\mathrm{Phi})^{\wedge} 3=(\mathrm{Phi})^{\wedge} 2+(\mathrm{Phi})\right],\left[(\mathrm{Phi})^{\wedge} 2\right)\right]$ was replaced by $[(\mathrm{Phi})+1]$, $\left[(\text { Phi })^{\wedge} 3=(\right.$ Phi $)+1+($ Phi $\left.)\right]$, sum the similar terms and resulted in $\left[(P h i)^{\wedge} 3=2(\mathrm{Phi})+1\right]$. The procedure was repeated, and the relationship of the exponent with their coefficients and constants was noted in the form of $\left[(P h i)^{\wedge} n=a^{*}(\right.$ Phi $\left.\left.)+b\right)\right]$, where n represented the power of (Phi), The numbers a and b represent constants. It was found that can be used the simple algorithm of the Fibonacci Sequence to find the powers of the irrational number (Phi). A computer algorithm was later created based in the new calculation of powers of (Phi). In addition, it was found that the idea can be generalized to any irrational solution of a quadratic equation, which would help in the teaching of Algebra and Number Theory.

