Time-Resolved Spin Lifetime Measurement of Surface States on the Topological Insulator Bi2Se3

Tom, Connor

The objective was to measure the spin lifetime of surface states on the topological insulator Bi2Se3 by a direct all-optical method. A pump-probe fs time-resolved optical study was performed on the surface of a (111) oriented Bi2Se3 sample. The sample was cleaved in air by the tape method. The 828 nm pump was incident with controlled polarization states and varied with a photoelastic modulator. The second-harmonic frequency of the probe pulse at 414 nm generated at the surface was detected with a photomultiplier and lockin detection. The sample's in-plane orientation was set to obtain surface-specific signals due to spin-polarized states. An ultrarapid transient probe SH response was observed due to the pump. The signal sign changes when the helicity of the pump and linear-polarization of the probe are reversed and provides a double-confirmation that the transient is due to spin-polarized surface carriers. The spin-lifetime is extracted from the data by curve-fitting with the measured pump-probe cross-correlation and mode-fitting to be ~50 fs. A longer transient, ~1 ps, does not depend on the helicity of the pump and is due to field-screening. Changes in field-screening after 1 hr of cleaving indicates that the surface Fermi Level increases after cleaving. 3D Topological Insulators are a new class of materials in which surface electronic states are topologically protected from backscatter: requires a spin flip. Here we have succeeded in unambiguously measuring the spin-lifetime of laser-excited carriers, albeit short. This is likely due to the surface Fermi Level being in the bulk conduction band so that pump-induced spin-polarized surface holes are rapidly filled by bulk conduction electrons. Longer spin-lifetimes will require the control of the surface Fermi Level.