Finnish Baseball's Draw of Choice (Hutunkeitto) as a Two Player Finite Game

Jarviniemi, Olli (School: Valkeakosken Tietotien Lukio)

Itextit\{Draw of choice\} (Finnish: "hutunkeitto") in Finnish baseball can be seen as a finite two-player game with winning and losing positions. By inspecting winning and losing positions one can determine the winning moves if such exist. Let the players be $\$ A \$$ and $\$ B \$$. Itextit\{Draw of choice\} can be stated as follows: let positive reals $\$ x, a _1, a _2, b _1, b _2 \$$ be given. $\$ A \$$ begins and subtracts some number from the interval $\$\left[a _1, a _2\right] \$$ from $\$ \times \$$. After this $\$ B \$$ subtracts some number from the interval $\$\left[b _1, b _2\right] \$$ from the current number. This procedure is continued until the number is negative or $\$ 0 \$$. The player to make the last move wins. Following results are found: let $\$ k \operatorname{lgeq} 0 \$$ be an integer. If $\$ x \$$ satisfies $\$ k\left(a _1+b _2\right)<x$ le ($k+1$)a_2 $+k b _1 \$ \$ A \$$ wins. $\$ A \$$ loses if $\$(k+1) a _2+k b _1<x \| e(k+1)\left(a _1+b _2\right) \$$. Similar results hold for $\$ B \$$. Also, if $\$ a _2-a _1>$ b_2 - b_1\$, then \$A\$ wins for all sufficiently large $\$ x \$$. The solution is computationally efficient: determining the winner for a single value $\$ \times \$$ can be done by finding the integer for which $\$ k\left(a _1+b _2\right)<x \| e(k+1)\left(a _1+b _2\right) \$$ holds. After this it should be checked if $\$ x \operatorname{le}(k+1) a _2+k b _1 \$$ holds. If yes, $\$ A \$$ wins, and otherwise $\$ A \$$ loses.

