On Numbers Whose Integer Parts of Powers Are Always Composite

Kim, Aaron (School: Bronx High School of Science)

It is known that there are countably many non-integers $\alpha>1$ which possess the property that $\square \alpha^{\wedge} n \square$ is not a prime for all integers $n \geq 1$. There are however very few known explicit examples of such numbers. A Pisot number is an algebraic integer $\alpha>1$ all whose conjugates are of modulus less than 1 . The degree of a Pisot number is the degree of its minimal polynomial. In this paper we exhibit infinitely many explicit quadratic, cubic, and quartic Pisot numbers α for which $\square \alpha^{\wedge} n \square$ is composite for all positive integers n . Moreover, we prove that for every $\mathrm{d} \geq 2$ where there exist infinitely many Pisot numbers of degree d which have the desired property.

Awards Won:
 Lawrence Technological University: STEM Scholar Award, a tuition scholarship of \$19,650 per year, renewable for up to four years and applicable to any major

National Security Agency Research Directorate : Third Place Award "Mathematics"

