Counting Visible Points on Square Lattice by Arithmetic Functions With Asymptotic Behavior

Lin, Pin-Hua (School: National Pingtung Senior High School)

Hsu, Jih-An (School: National Pingtung Senior High School)
For a fixed positive integer $b \in N$, let the b-sight lines be defined by $f(x)=a x^{\wedge} b$, for $a \in Q$, with the origin O as the observing point (the position of the eyes). A point in the square lattice $V(m)=\{(i, j) \mid i, j \in N, 1 \leq i \leq m, 1 \leq j \leq m\}$ is said to be b-visible if it is the "first" point in $V(m)$ that can be seen from the origin O through any sight line of the form $f(x)=a x^{\wedge} b$, for some $a \in Q$. Let $H _b(m)$ denote the total number of b-visible points in $V(m)$. Our goal in this project is to enumerate $H _b(m)$ and we show that it can be expressed by Möbius function. When $b=1$, due to symmetry, $\mathrm{H}_{-} 1(\mathrm{~m})$ can be further reduced to a very neat formula in terms of Euler function. Moreover, by a probability result in literature, we obtain a non-trivial asymptotic limit lim_\{m $\rightarrow \infty\} H$ _b $(m) / \wedge 2=1 / \zeta(b+1)$ where $\zeta(s)$ is the Riemann-Zeta function. Finally, assuming that we now observe lattice points in $V(m)$ from another square $S(k)=\{(r, t) \mid$ $0 \leq r \leq k, 0 \leq t \leq k\}$, not limited to just the origin O. To see every lattice in $V(m)$, we show that it can be done from $S(k)$ whose side length k is no more than $A \cdot \sqrt{ }(\pi(m))$, where $\pi(m)$ is the number of primes less than or equal to m, and $A=3 / \sqrt{ }(1-8 / 9 \ln (2.5)$ $) \approx 6.965$. Our result is novel and interesting as it links counting in combinatorics with arithmetic functions in number theory and asymptotic behavior from analysis.

