Generation, Construction, Matches: An Analysis of nSided Dice

Mishra, Renasha
Samuel, Shamay

We address n-sided dice whose face values lie between 1 and n and whose faces sum to $n(n+1) / 2$. We tackle the problem of generating n-sided dice by developing an algorithm to generate the integer partitions of n into exactly k parts, each part at most m. This general algorithm was then used to generate n-sided dice by making appropriate substitutions to the values of n, k, and m. We then create a class of constructions that enable us to obtain $(n+1)$ distinct $(n+1)$-sided dice from one n-sided die. Finally, we develop a function that allows us to identify the winning die of a match more efficiently than the previously used function.

