Counting Visible Points on Square Lattice by Arithmetic Functions With Asymptotic Behavior

Lin, Pin-Hua (School: National Pingtung Senior High School) Hsu, Jih-An (School: National Pingtung Senior High School)

For a fixed positive integer beN, let the b-sight lines be defined by $f(x)=ax^b$, for acQ, with the origin O as the observing point (the position of the eyes). A point in the square lattice $V(m)=\{(i, j) \mid i,j\in N, 1\le i\le m, 1\le j\le m\}$ is said to be b-visible if it is the "first" point in V(m) that can be seen from the origin O through any sight line of the form $f(x)=ax^b$, for some acQ. Let $H_b(m)$ denote the total number of b-visible points in V(m). Our goal in this project is to enumerate $H_b(m)$ and we show that it can be expressed by Möbius function. When b=1, due to symmetry, $H_1(m)$ can be further reduced to a very neat formula in terms of Euler function. Moreover, by a probability result in literature, we obtain a non-trivial asymptotic limit $\lim_{m\to\infty} H_b(m)/^2 = 1/\zeta(b+1)$ where $\zeta(s)$ is the Riemann-Zeta function. Finally, assuming that we now observe lattice points in V(m) from another square $S(k)=\{(r,t) \mid 0\le r\le k, 0\le t\le k\}$, not limited to just the origin O. To see every lattice in V(m), we show that it can be done from S(k) whose side length k is no more than $A \cdot \sqrt{(\pi(m))}$, where $\pi(m)$ is the number of primes less than or equal to m, and $A=3/\sqrt{(1-8/9 \ln(2.5))}$)≈6.965. Our result is novel and interesting as it links counting in combinatorics with arithmetic functions in number theory and asymptotic behavior from analysis.